

Model partitioning and time integration

NREL/DOE Workshop on the New Modularization Framework for the FAST Wind Turbine CAE Tool 08 October 2012

Michael A. Sprague*,1, Amir Gasmi¹, Jason Jonkman²

*michael.a.sprague@nrel.gov

¹Computational Science Center, NREL

²National Wind Technology Center, NREL

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Talk goals & outline

Talk goals: Describe partitioning schemes, module-coupling methods, and time integration for the new modularized FAST framework

Talk outline:

- Project goals
- Definitions
- Loose vs. tight coupling
- Fast as a glue code
- Example system
- Preliminary results
- Future work

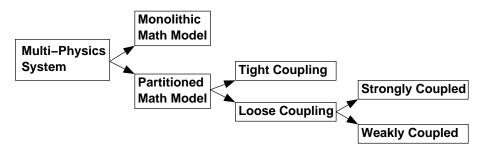
Project goals

Within the context of the new FAST modularization [1], provide FAST Module Developers with guidance on

- effective partitioning
- partition coupling
- time integration
- tight vs. loose coupling

Multi-physics modeling: Taxonomy

- Vocabulary/taxonomy surrounding multi-physics modeling and simulation is varied and sometimes contradictory
- ▶ Here, we use the following taxonomy (see Refs. [2, 3]):



Multi-physics modeling: Monolithic vs. partitioned

Monolithic math model:

- Single eqn. set that is inherently "tightly" coupled
- ➤ Different "systems" share degrees of freedom at spatial interfaces (e.g., fluid-structure interface)
- Requires a single time integrator and matching spatial and temporal meshes

Partitioned math model:

- Each partition can be time integrated separately
- Allows great flexibility in modeling
- Allows for non-matching spatial and temporal meshes
- Coupling partitioned models may introduce accuracy and/or numerical-stability issues

Coupling model partitions: Tight vs. loose

Tight coupling:

- Partitioned-model equations are assembled into a single system; single time integrator
- Matching temporal meshes; may have non-matching spatial meshes
- Likely requires differential-algebraic-equation (DAE) solver
- Allows for linearized analyses (time and/or modal)

Loose coupling:

- Partitioned-model equations are time integrated in a conventional serial staggered procedure [3]
- Different time-integrators can be used for different partitions
- Allows for non-matching temporal and spatial meshes

Loose coupling: Weak vs. strong

Weak vs. strong coupling is associated with data sharing between partitions during time integration

Weak loose coupling:

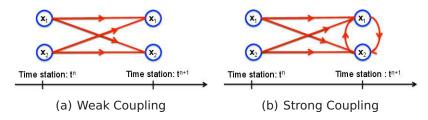
- ► Each partition is advanced from t to $t + \Delta t$ using other-partition interface data **only** at t
- Also known as explicit coupling

Strong loose coupling:

- Each partition is advanced from t to t + Δt using other-partition interface data at t + Δt and possibly t
- Also known as implicit coupling

Weak (explicit) vs. strong (implicit) staggered coupling: Schematics

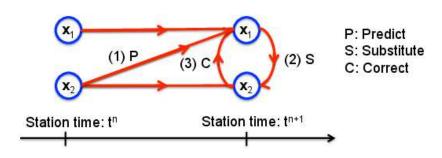
Consider staggered integration of two partitions:



 Because partitions are updated sequentially, direct solution of fully implicit coupling is not feasible

Strong (implicit) coupling via predictor-corrector coupling

Solution required for time advancement in implicit coupling can be solved **iteratively** through a predictor-corrector approach



FAST as a glue code

- FAST will function as a glue code for coupling modules/partitions [1]
- The underlying model for each module/partition will be a state-space representation:

$$\dot{\mathbf{x}}(t) = \mathbf{X}(t, \mathbf{x}(t), \mathbf{u}(t), \mathbf{z}(t))$$

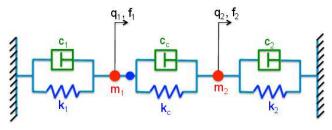
 $\mathbf{y}(t) = \mathbf{Y}(t, \mathbf{x}(t), \mathbf{u}(t), \mathbf{z}(t))$
 $0 = \mathbf{Z}(t, \mathbf{x}(t), \mathbf{u}(t), \mathbf{z}(t))$

where \mathbf{x} is the state, \mathbf{y} is the system output, \mathbf{u} is the system input, and \mathbf{z} is the constraint

- For time-dependent partial-differential eqs., this is a method of lines approach; spatial derivatives have been discretized
- Numerical time integration depends on choice of tight versus loose coupling of modules

Example monolithic system

Two-degree-of-freedom damped linear oscillator, with applied forces $f_1(t)$, $f_2(t)$:

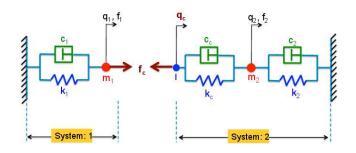


$$\mathbf{x} = \begin{bmatrix} q_1, \dot{q}_1, q_2, \dot{q}_2 \end{bmatrix}^T, \quad \mathbf{y} = \emptyset, \quad \mathbf{u} = \emptyset, \quad \mathbf{z} = \emptyset$$

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{k_c + k_1}{m_1} & -\frac{c_c + c_1}{m_1} & \frac{k_c}{m_1} & \frac{c_c}{m_1} \\ 0 & 0 & 0 & 1 \\ \frac{k_c}{m_2} & \frac{c_c}{m_2} & -\frac{k_c + k_2}{m_2} & -\frac{c_c + c_2}{m_2} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ \frac{f_1}{m_1} \\ 0 \\ \frac{f_2}{m_2} \end{bmatrix}$$

Example partitioned system

Example partitioning:



▶ Required introduction of coupling force f_c , which functions as a **Lagrange multiplier**

Partitioning

System 1:

$$\begin{aligned} \mathbf{x}_1 &= \left[q_1, \dot{q}_1\right]^T, \quad \mathbf{y}_1 &= \left[q_1, \dot{q}_1\right]^T, \quad \mathbf{u}_1 &= \left[f_c\right], \quad \mathbf{z}_1 &= \varnothing \\ \dot{\mathbf{x}}_1 &= \begin{bmatrix} 0 & 1 \\ -\frac{k_1}{m_1} & -\frac{c_1}{m_1} \end{bmatrix} \mathbf{x}_1 + \begin{bmatrix} 0 \\ \frac{1}{m_1} \end{bmatrix} \mathbf{u}_1 + \begin{bmatrix} 0 \\ \frac{f_1}{m_1} \end{bmatrix} \\ &= \mathbf{A}_1 \mathbf{x}_1 + \mathbf{B}_1 \mathbf{u}_1 + \mathbf{f}_1 \end{aligned}$$

System 2:

$$\mathbf{x}_{2} = [q_{2}, \dot{q}_{2}]^{T}, \quad \mathbf{y}_{2} = [c_{c}(\dot{q}_{2} - \dot{q}_{c}) + k_{c}(q_{2} - q_{c})]$$

$$\mathbf{u}_{2} = [q_{c}, \dot{q}_{c}]^{T}, \quad \mathbf{z}_{2} = \emptyset$$

$$\dot{\mathbf{x}}_2 = \begin{bmatrix} 0 & 1 \\ -\frac{k_c + k_2}{m_2} & -\frac{c_c + c_2}{m_2} \end{bmatrix} \mathbf{x}_2 + \begin{bmatrix} 0 & 1 \\ \frac{k_c}{m_2} & \frac{c_c}{m_2} \end{bmatrix} \mathbf{u}_2 + \begin{bmatrix} 0 \\ \frac{f_2}{m_2} \end{bmatrix} \\
= \mathbf{A}_2 \mathbf{x}_2 + \mathbf{B}_2 \mathbf{u}_2 + \mathbf{f}_2$$

Partition input-output relationships

Input-output relationships: $0 = \mathbf{u}_1 - \mathbf{y}_2$, $0 = \mathbf{u}_2 - \mathbf{y}_1$ Given

$$\mathbf{y}_{1} = [q_{1}, \dot{q}_{1}]^{T}, \quad \mathbf{u}_{1} = [f_{c}],$$
 $\mathbf{y}_{2} = [c_{c}(\dot{q}_{2} - \dot{q}_{c}) + k_{c}(q_{2} - q_{c})], \quad \mathbf{u}_{2} = [q_{c}, \dot{q}_{c}]^{T}$

we find the following constraints:

$$f_c = c_c (\dot{q}_2 - \dot{q}_c) + k_c (q_2 - q_c)$$

 $q_1 = q_c$
 $\dot{q}_1 = \dot{q}_c$

Partitioned system: Tight coupling

Partitions can be assembled directly into a global system:

$$\left[\begin{array}{c} \dot{\boldsymbol{x}}_1 \\ \dot{\boldsymbol{x}}_2 \end{array}\right] = \left[\begin{array}{cc} \boldsymbol{A}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{A}_2 \end{array}\right] \left[\begin{array}{c} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{array}\right] + \left[\begin{array}{cc} \boldsymbol{B}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{B}_2 \end{array}\right] \left[\begin{array}{c} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{array}\right] + \left[\begin{array}{c} \boldsymbol{f}_1 \\ \boldsymbol{f}_2 \end{array}\right]$$

$$\mathbf{0} = \begin{bmatrix} \mathbf{u}_1 - \mathbf{y}_2 \\ \mathbf{u}_2 - \mathbf{y}_1 \end{bmatrix} \Rightarrow \mathbf{0} = \begin{bmatrix} f_c - c_c (\dot{q}_2 - \dot{q}_c) - k_c (q_2 - q_c) \\ q_1 - q_c \\ \dot{q}_1 - \dot{q}_c \end{bmatrix}$$

- ► Treat q_c , \dot{q}_c , and f_c as algebraic constraint variables; system can be viewed as a **Differential Algebraic Equation (DAE)**, with DAE Index 1
- System can be time integrated (tightly) with standard, open-source DAE solvers, e.g. DASSL: http://www.cs.ucsb.edu/~cse/software.html

Time integration: Loose coupling

 Each FAST module will have the capability to advance the State one time step, i.e.,

$$\dot{\mathbf{x}} = \mathbf{X}[t, \mathbf{x}(t), \mathbf{L}(\alpha, \mathbf{u}(t), \mathbf{u}(t + \Delta t))] \xrightarrow{\mathsf{UpdateStates}} \mathbf{x}(t + \Delta t)$$

where **L** is a linear-interpolation operator:

$$\mathbf{L}(\alpha, \mathbf{u}(t), \mathbf{u}(t + \Delta t)) = (1 - \alpha)\mathbf{u}(t) + \alpha\mathbf{u}(t + \Delta t)$$

- ▶ Input **u** is held constant while the state **x** is advanced
- "UpdateStates" embodies numerical time integration, e.g. Runge-Kutta, Adams-Bashforth-Moulton, Backwards FD
- Weak explicit coupling: $\alpha = 0$
- ▶ Strong implicit coupling: $0 < \alpha \le 1$

Predictor-Corrector Loose coupling (1)

Preliminary calculations: Let j = 0

$$\mathbf{u}_{1}^{n+1(j)} = 2\mathbf{u}_{1}^{n} - \mathbf{u}_{1}^{n-1}$$

Step 1 (Predict):

$$\begin{split} \dot{\mathbf{x}}_1 &= \mathbf{X}_1 \left(t, \mathbf{x}_1(t), \mathbf{L} \left(\alpha, \mathbf{u}_1^n, \mathbf{u}_1^{n+1(j)} \right) \right) \xrightarrow{\mathsf{RK4}} \mathbf{x}_1^{n+1(j)} \\ \mathbf{y}_1^{n+1(j)} &= \mathbf{Y}_1 \left(t^{n+1}, \mathbf{x}_1^{n+1(j)}, \mathbf{L} \left(\alpha, \mathbf{u}_1^n, \mathbf{u}_1^{n+1(j)} \right) \right) \\ \mathbf{u}_2^{n+1(j)} &= \mathbf{y}_1^{n+1(j)} \end{split}$$

Step 2 (Substitute & predict):

$$\begin{split} \dot{\mathbf{x}}_2 &= \mathbf{X}_2\left(t, \mathbf{x}_2(t), \mathbf{L}\left(\alpha, \mathbf{u}_2^n, \mathbf{u}_2^{n+1(j)}\right)\right) \xrightarrow{\mathsf{RK4}} \mathbf{x}_2^{n+1(j+1)} \\ \mathbf{y}_2^{n+1(j+1)} &= \mathbf{Y}_2\left(t^{n+1}, \mathbf{x}_2^{n+1(j+1)}, \mathbf{L}\left(\alpha, \mathbf{u}_2^n, \mathbf{u}_2^{n+1(j)}\right)\right) \\ \mathbf{u}_1^{n+1(j+1)} &= \mathbf{y}_2^{n+1(j+1)} \end{split}$$

Predictor-Corrector Loose coupling (2)

Step 3 (Substitue & correct):

$$\begin{split} \dot{\mathbf{x}}_1 &= \mathbf{X}_1 \left(t, \mathbf{x}_1(t), \mathbf{L} \left(\alpha, \mathbf{u}_1^n, \mathbf{u}_1^{n+1(j+1)} \right) \right) \xrightarrow{\mathsf{RK4}} \mathbf{x}_1^{n+1(j+1)} \\ \mathbf{y}_1^{n+1(j+1)} &= \mathbf{Y}_1 \left(t^{n+1}, \mathbf{x}_1^{n+1(j+1)}, \mathbf{L} \left(\alpha, \mathbf{u}_1^n, \mathbf{u}_1^{n+1(j+1)} \right) \right) \\ \mathbf{u}_2^{n+1(j+1)} &= \mathbf{y}_1^{n+1(j+1)} \end{split}$$

Stop or Repeat: Let $(j+1) \rightarrow j$. If $j = j_{max}$, let

$$\mathbf{x}_1^{n+1} = \mathbf{x}_1^{n+1(j_{max})}, \qquad \mathbf{x}_2^{n+1} = \mathbf{x}_2^{n+1(j_{max})},$$
 $\mathbf{u}_1^{n+1} = \mathbf{u}_1^{n+1(j_{max})}, \qquad \mathbf{u}_2^{n+1} = \mathbf{u}_2^{n+1(j_{max})}$

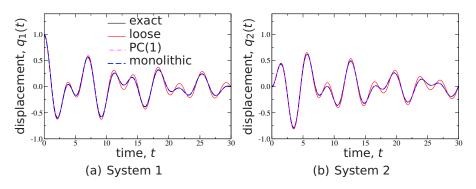
and proceed to next time step; otherwise, repeat Steps 2 and 3

We denote this approach $PC(j_{max})$

Preliminary results: Histories

Examine loose coupling where each system is time integrated with RK4 and $\Delta t = 0.05$

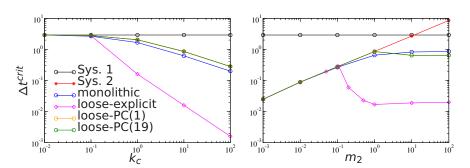
System 1			System 2				
m_1	<i>c</i> ₁	k_1	m_2	<i>C</i> ₂	k ₂	C _C	k _c
1.0	0.1	1.0	1.0	0.1	1.0	0.01	1.0



Exact, PC(1), and monolithic histories are indistinguishable

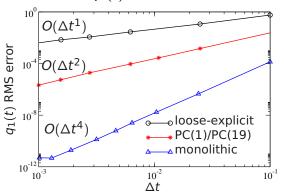
Preliminary results: Numerical stability

- ▶ Vary k_c and m_2 , independently, and examine effect on critical time increment, Δt^{crit}
- "Sys. 1" and "Sys. 2" data are for uncoupled time integration
- Loose coupling significantly degrades numerical stability
- ▶ PC coupling shows similar stability w.r.t. mono. treatment



Preliminary results: Numerical accuracy

► Examine convergence rates for RK4 time integration; consider RMS error of $q_1(t)$ over $0 < t \le 30$



- Monolithic system shows fourth-order convergence
- Loose explicit coupling is only first-order accurate
- PC(1)/PC(19) stong loose coupling is only second-order accurate

Future work

- Examine loose coupling with a multi-step method like Adams-Bashforth-Moulton
 - Pursue coupling scheme that retains maximum accuracy
- Extend example-problem set to include
 - · discrete-time partition
 - nonlinearity
 - · partition-internal contraints
- Compare loose and tight coupling in terms of accuracy vs. computational cost
- Work to be presented at the AIAA 51st Aerospace Sciences Meeting [4]

References

Jonkman, J. M., "The New Modularization Framework for the FAST Wind Turbine CAE Tool," *Proceedings of the 51st Aerospace Sciences Meeting*, Grapevine, Texas, USA, 2013, to appear.

Felippa, C., Park, K., and Farhat, C., "Partitioned analysis of coupled mechanical systems," *Computer Methods in Applied Mechanics and Engineering*, Vol. 190, 2001, pp. 3247–3270.

Farhat, C., van der Zee, K. G., and Geuzaine, P., "Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity," *Computer Methods in Applied Mechanics and Engineering*, Vol. 195, 2006, pp. 1973–2001.

Gasmi, A., Sprague, M. A., and Jonkman, J. M., "Numerical stability and accuracy of temporally coupled multi-physics modules in wind-turbine CAE tools," *Proceedings of the 51st Aerospace Sciences Meeting*, Grapevine, Texas, USA, 2013, to appear.